Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Comput Chem ; 42(32): 2283-2293, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1441999

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously evolving. Although several vaccines were approved, this pandemic is still a major threat to public life. Till date, no established therapies are available against SARS-CoV-2. Peptide inhibitors hold great promise for this viral pathogen due to their efficacy, safety, and specificity. In this study, seventeen antiviral peptides which were known to inhibit SARS-CoV-1 are collected and computationally screened against heptad repeat 1 (HR1) of the SARS-CoV-2 spike protein (S2). Out of 17 peptides, Fp13 and Fp14 showed better binding affinity toward HR1 compared to a control peptide EK1 (a modified pan-coronavirus fusion inhibitor) in molecular docking. To explore the time-dependent interactions of the fusion peptide with HR1, molecular dynamics simulation was performed incorporating lipid membrane. During 100 ns MD simulation, structural and energy parameters of Fp13-HR1 and Fp14-HR1 complexes demonstrated lower fluctuations compared to the control EK1-HR1 complex. Furthermore, principal component analysis and free energy landscape study revealed that these two peptides (Fp13 and Fp14) strongly bind to the HR1 with higher affinity than that of control EK1. Tyr917, Asn919, Gln926, lys933, and Gln949 residues in HR1 protein were found to be crucial residues for peptide interaction. Notably, Fp13, Fp14 showed reasonably better binding free energy and hydrogen bond contribution than that of EK1. Taken together, Fp13 and Fp14 peptides may be highly specific for HR1 which can potentially prevent the formation of the fusion core and could be further developed as therapeutics for treatment or prophylaxis of SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/pharmacology , Peptides/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Humans , Microbial Sensitivity Tests , Peptides/chemistry , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism
2.
Inform Med Unlocked ; 24: 100578, 2021.
Article in English | MEDLINE | ID: covidwho-1198821

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmittable and pathogenic human coronavirus that caused a pandemic situation of acute respiratory syndrome, called COVID-19, which has posed a significant threat to global health security. The aim of the present study is to computationally design an effective peptide-based multi-epitope vaccine (MEV) against SARS-CoV-2. The overall model quality of the vaccine candidate, immunogenicity, allergenicity, and physiochemical analysis have been conducted and validated. Molecular dynamics studies confirmed the stability of the candidate vaccine. The docked complexes during the simulation revealed a strong and stable binding interactions of MEV with human and mice toll-like receptors (TLR), TLR3 and TLR4. Finally, candidate vaccine codons have been optimized for their in silico cloning in E. coli expression system, to confirm increased expression. The proposed MEV can be a potential candidate against SARS-CoV-2, but experimental validation is needed to ensure its safety and immunogenicity status.

3.
J Biomol Struct Dyn ; 40(10): 4725-4738, 2022 07.
Article in English | MEDLINE | ID: covidwho-990282

ABSTRACT

SARS-CoV-2 membrane (M) protein performs a variety of critical functions in virus infection cycle. However, the expression and purification of membrane protein structure is difficult despite tremendous progress. In this study, the 3 D structure is modeled followed by intensive validation and molecular dynamics simulation. The lack of suitable homologous templates (>30% sequence identities) leads us to construct the membrane protein models using template-free modeling (de novo or ab initio) approach with Robetta and trRosetta servers. Comparing with other model structures, it is evident that trRosetta (TM-score: 0.64; TM region RMSD: 2 Å) can provide the best model than Robetta (TM-score: 0.61; TM region RMSD: 3.3 Å) and I-TASSER (TM-score: 0.45; TM region RMSD: 6.5 Å). 100 ns molecular dynamics simulations are performed on the model structures by incorporating membrane environment. Moreover, secondary structure elements and principal component analysis (PCA) have also been performed on MD simulation data. Finally, trRosetta model is utilized for interpretation and visualization of interacting residues during protein-protein interactions. The common interacting residues including Phe103, Arg107, Met109, Trp110, Arg131, and Glu135 in the C-terminal domain of M protein are identified in membrane-spike and membrane-nucleocapsid protein complexes. The active site residues are also predicted for potential drug and peptide binding. Overall, this study might be helpful to design drugs and peptides against the modeled membrane protein of SARS-CoV-2 to accelerate further investigation. Communicated by Ramaswamy H. Sarma.


Subject(s)
Coronavirus M Proteins , SARS-CoV-2 , Coronavirus M Proteins/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL